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Electro-osmotic flow is a convenient mechanism for transporting fluid in microfluidic
devices. The flow is generated through the application of an external electric field
that acts on the free charges that exist in a thin Debye layer at the channel walls.
The charge on the wall is due to the particular chemistry of the solid–fluid interface
and can vary along the channel either by design or because of various unavoidable
inhomogeneities of the wall material or because of contamination of the wall by
chemicals contained in the fluid stream. The channel cross-section could also vary in
shape and area. The effect of such variability on the flow through microfluidic channels
is of interest in the design of devices that use electro-osmotic flow. The problem of
electro-osmotic flow in a straight microfluidic channel of arbitrary cross-sectional
geometry and distribution of wall charge is solved in the lubrication approximation,
which is justified when the characteristic length scales for axial variation of the wall
charge and cross-section are both large compared to a characteristic width of the
channel. It is thereby shown that the volume flux of fluid through such a microchannel
is a linear function of the applied pressure drop and electric potential drop across it,
the coefficients of which may be calculated explicitly in terms of the geometry and
charge distribution on the wall. These coefficients characterize the ‘fluidic resistance’
of each segment of a microfluidic network in analogy to the electrical ‘resistance’ in
a microelectronic circuit. A consequence of the axial variation in channel properties
is the appearance of an induced pressure gradient and an associated secondary flow
that leads to increased Taylor dispersion limiting the resolution of electrophoretic
separations. The lubrication theory presented here offers a simple way of calculating
the distortion of the flow profile in general geometries and could be useful in studies
of dispersion induced by inhomogeneities in microfluidic channels.

1. Introduction
Many solid substrates, (such as glass, silicon, polymeric materials, minerals) acquire

a surface charge when in contact with electrolytes. The charged surface attracts free
ions of the opposite sign creating a thin (∼ 1–10 nm) Debye layer of mobile charges
next to it. In the presence of an external electric field, the fluid in this Debye
layer acquires a momentum which is then transmitted to adjacent layers of fluid
through the effect of viscosity. The resulting fluid motion is known as electro-osmotic
flow (Probstein 1994). Since the force per unit length of channel is proportional
to the circumference of the channel while the mass of fluid that must be moved is
proportional to the cross-sectional area, the effect is significant in very narrow channels
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such as those etched on substrates (∼ 10–100 µm diameter or less) in microfluidic
devices, or, in the interparticle spaces in porous media. Electro-osmotic flow was first
reported by Reuss in 1809 in experiments that demonstrated that water could be
made to percolate through porous clay diaphragms through the application of an
electric field (Reuss 1809).

In recent years, electro-osmotic flow (EOF) has found wide application in micro-
fluidic devices as an efficient method for transporting fluid (Jakeway, de Mello &
Russell 2000; Whitesides & Stroock 2000). The convenience of being able to move
fluid by applying voltages along the channels, has the advantage that electric and
fluidic circuits can be integrated on the same microchip to build complex miniaturized
devices without moving parts. In addition, EOFs in uniform channels have a constant
velocity over the channel cross-section (except within the thin Debye layer at the wall).
This is in contrast to the situation in pressure-driven flows, such as the Poiseuille
flow in circular pipes, where the velocity distribution has a parabolic profile. As a
result, in EOF Taylor dispersion (Probstein 1994) of solutes is very small. This is
a great advantage in many bioanalytical applications of microfluidics. For example,
the resolution in electrophoretic separation of biomolecules of only slightly differing
mobilities is limited by Taylor dispersion (Culbertson, Jacobson & Ramsey 1998).

The uniformity of the flow profile and the resulting low Taylor dispersion are
characteristic of microfluidic channels with a uniform wall charge. In the presence
of inhomogeneities in the wall charge, induced pressure gradients are created that
distort the uniformity of the flow profile (Herr et al. 2000), reducing the efficiency of
microfluidic devices that use EOF for electrophoretic separations. A common cause
of non-uniformity of the wall charge is the adsorption of certain organic molecules
onto the wall during analysis (Towns & Regnier 1991, 1992). Further, the wall charge
depends strongly on the pH of the buffer and is known to exhibit hysterisis effects
when the pH is changed (Lambert & Middleton 1990). Various synthetic materials
such as acrylic and Poly(dimethylsiloxane) (PDMS) are being investigated as possible
replacements for glass or silicon substrates on account of their lower cost among
other advantages (Anderson et al. 2000). A difficulty with the use of such materials
is that the wall charge is not as uniform as in the glass and silicon-based devices.
In order to overcome such difficulties and allow more precise control over the wall
charge, various synthetic coatings are being investigated (Liu et al. 2000). With such
techniques, channels with a specified variation of the wall charge could be engineered
to build novel fluidic properties into micro devices (Barkar et al. 2000). Control of
wall charge using externally applied voltages has also been studied (Lee, Blanchard
& Wu 1990; Hayes & Ewing 1992).

In light of these continuing developments in microfluidic technology, the problem
of EOF in microfluidic channels of variable wall charge is of great interest. Anderson
& Idol (1985) considered the problem of EOF through a uniform, infinite, straight
cylindrical capillary with a wall charge that varies solely in the axial direction. A
uniform external electric field and zero imposed pressure gradient was assumed. An
exact solution to the Stokes flow problem was derived by means of separation of
variables and series expansion. More recently, Herr et al. (2000) studied the problem
of flow through a cylindrical capillary tube with a wall charge that undergoes
a stepwise change in the axial direction. This problem is a special case of that
considered by Anderson & Idol. The requirement of mass continuity forces the
appearance of a pressure gradient and associated Poiseuille flow. Two capillaries
with different surface coatings were joined together to produce a capillary with a
stepwise variation in wall charge. The flow profile was measured experimentally using
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a caged fluorescence technique, and the result confirmed the theoretical predictions.
The problem of electro-osmotic flow between parallel plates was studied by Ajdari
(1995, 1996), who considered the simultaneous effect of small periodic deformations
of the wall and a periodic distribution of wall charge in the direction of the applied
field. It was shown that a net flow and forces could be generated even if the mean
charge in the axial direction was zero. Stroock et al. (2000) reported observations of
electro-osmotic flow in a long channel of rectangular cross-section (260 µm× 130 µm)
with a patterned surface charge of alternating sign that was fabricated using soft
lithographic techniques (Anderson et al. 2001). The stripe width was of the same
order as the channel width and two orientations were studied, first with stripes
parallel to the flow, and secondly, with stripes perpendicular to the flow.

On account of the narrowness of microfluidic channels, axial non-uniformities in
wall charge could typically be expected to occur over a characteristic length that is very
much larger than a characteristic channel width. This is true, for example, in situations
where the variation of wall charge is due to the adsorption of chemicals from the flow
stream. Then, the ratio of a characteristic channel width to a characteristic length scale
for axial variation is a small parameter, ε. An asymptotic solution in the parameter ε is
presented for the problem of flow through a straight microfluidic channel of arbitrary
wall charge and cross-sectional shape at leading order (the lubrication approximation).
The solution allows a reduced description of the fluid flow problem in all situations
where the lubrication approximation can be justified. In the special case of a channel
of circular cross-section with an imposed electric potential but no imposed pressure
gradient, the solution of Anderson & Idol quoted above is recovered at leading
order. In the case of a channel of circular cross-section with no electric potential but
an imposed pressure gradient, we recover the well-known result for pressure-driven
flows in capillaries of slowly varying radius (Batchelor 1967). Lubrication theory has
been used in the context of electro-osmotic flow by several authors. In particular,
Ajdari (1996) considered the lubrication limit of the exact solution to the problem of
electro-osmotic flow between two parallel plates in the presence of wall deformations
and surface charge that vary in the direction of the electric field. Long, Stone &
Ajdari (1999) solved the problem of electro-osmotic flow between parallel plates with
arbitrary distribution of the ζ-potential on the two surfaces, and further, considered
the lubrication limit of their solution. They also presented the lubrication limit of
the exact solution for electro-osmotic flow through a cylindrical capillary with axially
varying ζ-potential due to Anderson & Idol (1985). The current analysis differs from
the earlier work cited above, in that, the lubrication limit is taken as the starting point
of the analysis without any restrictions on the geometry or charge distribution of the
channel. Thus, the results presented here have a wider range of validity; in particular,
they are applicable to channels of rectangular and trapezoidal cross-sections that
are used in practical microfluidic devices. In the special case of parallel plates and
cylindrical capillaries, the lubrication limit considered here reduces to the earlier
results of Ajdari (1996) and Long et al. (1999). The lubrication approximation may
not be valid in all problems involving EOF; in particular, it may not be accurate for
the case of a stepwise change in wall charge, or a localized source of non-uniformity
of dimensions much smaller than the channel diameter. However, in situations where
it can be justified, the approximation allows a highly simplified description of the
flow. The lubrication approximation has been used effectively in many areas of fluid
mechanics; in particular, in the problem of blood flow in microcapillaries (Lighthill
1968; Secomb et al. 1986) and more recently, in the analysis of micro-pumps for
mechanical pumping of fluids in microfluidic channels (Day & Stone 2000).
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Figure 1. The flow geometry for the problem of electro-osmotic flow in a microfluidic channel
with variable cross-section and ζ-potential.

In the next section, the basic equations describing the electrohydrodynamic problem
in microfluidic channels are written down at the level of the ‘Helmholtz–Smoluchowski
formulation’ for thin Debye layers. In § 3, the lubrication approximation is introduced
and the problem is solved by asymptotic analysis in the lubrication limit. In § 4, some
of the consequences of the solution are examined in the general case as well as in
the particular cases of rectangular and circular cross-sections. For a uniform capillary
of circular cross-section, the result of the lubrication analysis is compared to the
exact solution for the corresponding Stokes flow problem due to Anderson & Idol.
Section 5 contains a summary of the principal results and identifies some possible
areas of future investigation.

2. Mathematical formulation
We consider an infinitely long straight channel, or one whose length is very much

larger than a characteristic width, which we will denote by a0. The fluid flow inside
the channel will be described by reference to a right-handed orthogonal coordinate
system with the x-axis directed along the axis of the channel (figure 1). We make the
following assumptions:

(i) The characteristic length scale for the variation of the cross-sectional shape
and area in the x-direction is much larger than a0.

(ii) The characteristic length scale for the variation of the wall charge in the
x-direction is much larger than a0.

(iii) The Debye length (λD), characterizing the thickness of the Debye layer, is much
smaller than a0.
The justification for (i) and (ii) was discussed previously. The last assumption is
usually a good one, since for typical microfluidic channels, a0 ∼ 10–100 µm, but
λD ∼ 1–10 nm.
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The fluid velocity, u, and pressure p, in the region Ω representing the interior of
the channel are governed by the incompressible Navier–Stokes equations and the
continuity equation:

ρ0(∂tu+ u · ∇u) = −∇p+ µ∇2u, (2.1)

∇ · u = 0, (2.2)

where, the constants ρ0 and µ are, respectively, the density and viscosity of the fluid.
The electro-osmotic effect arises through the Helmholtz–Smoluchowski slip boundary
conditions (Probstein 1994) [

u+
κζE

4πµ

]
∂Ω

= 0, (2.3)

on the part of the boundary ∂Ω that represents the solid–fluid interface. The constant
κ is the dielectric constant of the fluid and E is the electric field outside the Debye
layer. This treatment assumes the Debye layer to be infinitely thin, an assumption
that may be justified, when λD � a0, so that the velocity at the outer edge of the
Debye layer can be used as the boundary condition for the flow in Ω. The parameter
ζ, known as the ‘ζ-potential’, is the electric potential at the inner edge of the Debye
layer (Probstein 1994), that is, at the plane corresponding to the true liquid/substrate
interface where the ‘no slip’ boundary conditions for the fluid velocity are imposed.
Clearly, it is related to the surface density of fixed charges on the substrate and is
determined by the specific surface chemistry of the substrate–electrolyte interface. The
assumption of the slow variation of surface charge in the axial direction is equivalent
to the assumption that ζ = ζ(x, y, z) varies with respect to x on a length scale much
larger than a0. The variation with respect to y and z is, however, arbitrary.

For steady applied voltages, or, if the characteristic time for variation of these
voltages is much slower than the characteristic propagation time of electro-magnetic
waves over the channel length, the electric field E may be expressed through an
electric potential φ,

E = −∇φ. (2.4)

Since the electric double layer at the channel boundary is considered external to the
domain Ω, and, the fluid outside the Debye layer is electrically neutral on length
scales large in relation to the mean separation of ions, φ satisfies

∇2φ = 0 (2.5)

in Ω, with the boundary condition

[n̂ · ∇φ]∂Ω = 0, (2.6)

where n̂ is the unit normal to ∂Ω directed out of Ω. These boundary conditions must
be supplemented with appropriate additional conditions on the lateral boundaries at
the inlet and outlet sections S0 and S1.

3. Lubrication approximation
Let us denote by L the smallest of the characteristic length scales for the axial

variation of the cross-sectional shape, area and ζ-potential. Then, ε = a0/L is a small
parameter of the problem. We would like to obtain the leading-order solution in
an asymptotic series in ε of the full electrohydrodynamic problem formulated in the
previous section.
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3.1. Dimensionless variables

If ζ0 and E0 denote characteristic values for the ζ-potential and electric field, then the
fluid velocity in the channel has a characteristic value

u0 = −κζ0E0

4πµ
. (3.1)

The velocity u0 actually represents exactly the uniform velocity that the fluid will
acquire in an infinite uniform channel with no external pressure gradient, but with
an imposed constant electric field E0. Let us introduce the following scaled variables
which are expected to be of order unity in the limit ε→ 0,

X = x/L, Y = y/a0, Z = z/a0, T = u0t/L, (3.2)

U = u/u0, V = (L/a0)(v/u0), W = (L/a0)(w/u0), P = p/p0, (3.3)

Φ = φ/(E0L), Z = ζ/ζ0, (3.4)

where p0 = (µu0L/a
2
0) is a characteristic value for pressure, and the scaling of v and w

are chosen so that all of the terms in the continuity equation are of the same order.
In terms of the dimensionless variables, the equations describing the electrohydro-

dynamic problem presented in the last section take the form

εRe[UT +UUX + VUY +WUZ ] = −PX + ε2UXX +UYY +UZZ, (3.5)

εRe[VT +UVX + VVY +WVZ ] = − 1

ε2
PY + ε2VXX + VY Y + VZZ , (3.6)

εRe[WT +UWX + VWY +WWZ ] = − 1

ε2
PZ + ε2WXX +WYY +WZZ, (3.7)

UX + VY +WZ = 0, (3.8)

ε2ΦXX + ΦYY + ΦZZ = 0, (3.9)

and the boundary conditions on ∂Ω may be written as

[U +ZΦX]∂Ω = 0, (3.10)

[ε2V +ZΦY ]∂Ω = 0, (3.11)

[ε2W +ZΦZ ]∂Ω = 0, (3.12)

[ε2`ΦX + mΦY + nΦZ ]∂Ω = 0, (3.13)

where n̂ = ε`î+mĵ+nk̂ on account of the slow variation in the channel cross-section,
and Re = U0a0ρ0/µ is the Reynolds number based on the characteristic channel width.
In microfluidic systems the Reynolds number is typically small, Re ∼ 10−3–10−1.
However, the analysis presented here is valid even if Re ∼ 1, since it depends only on
the smallness of the product εRe.

3.2. Asymptotic expansion

The electrohydrodynamic problem defined above must be solved in the limit of ε� 1.
We expand all dependent variables in asymptotic series in ε of the form

Ψ = Ψ (0) + εΨ (1) + ε2Ψ (2) + ε3Ψ (3) + · · · (3.14)

where Ψ stands for any of the variables U,V ,W , P or Φ. Equating to zero the
coefficient of each term on the left-hand side of the equations, we obtain, at
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lowest order

−P (0)
X +U

(0)
Y Y +U

(0)
ZZ = 0, (3.15)

−P (0)
Y = 0, (3.16)

−P (0)
Z = 0, (3.17)

U
(0)
X + V

(0)
Y +W

(0)
Z = 0, (3.18)

Φ
(0)
Y Y + Φ

(0)
ZZ = 0, (3.19)

and, similarly, from the boundary conditions

[U(0) +ZΦ(0)
X ]∂Ω = 0, (3.20)

[Φ(0)
Y ]∂Ω = 0, (3.21)

[Φ(0)
Z ]∂Ω = 0, (3.22)

[mΦ(0)
Y + nΦ

(0)
Z ]∂Ω = 0. (3.23)

Equation (3.19), together with boundary condition (3.23), implies that Φ(0) is a constant
with respect to Y and Z . Therefore,

Φ(0) = Φ(0)(X). (3.24)

The conditions (3.21) and (3.22) arising out of the slip boundary conditions on the
velocity are therefore identically satisfied. Equations (3.16) and (3.17) imply that

P (0) = P (0)(X). (3.25)

Let us denote by D(X) the intersection of Ω with the plane perpendicular to the
X-axis through the location X, and ∂D(X) the boundary of this domain. Then, the
solution of the boundary-value problem (3.15) and (3.20) may be written as

U(0) = −P(X,Y , Z)P (0)
X (X)− E(X,Y , Z)Φ(0)

X (X), (3.26)

where P and E are defined through the following boundary-value problems on the
two-dimensional domain D(X) and have only a parametric dependence on X:

PY Y +PZZ = −1, (3.27)

P|∂D(X) = 0, (3.28)

and

EY Y + EZZ = 0, (3.29)

E|∂D(X) =Z. (3.30)

If we introduce the Green function, G(X;Y ,Z, Y∗, Z∗) for the Laplace operator in
D(X) corresponding to zero boundary conditions on ∂D(X):

∂2G

∂Y 2∗
+
∂2G

∂Z2∗
= −4πδ(Y∗ − Y )δ(Z∗ − Z), (3.31)

G(X;Y ,Z, Y∗, Z∗)|(Y∗ ,Z∗)∈∂D(X) = 0, (3.32)

both P and E may be expressed in terms of G as follows:

P =
1

4π

∫
D(X)

G(X;Y ,Z, Y∗, Z∗) dY∗ dZ∗, (3.33)

E = − 1

4π

∮
∂D(X)

Z(X,Y∗, Z∗)
(
m
∂G

∂Y∗
+ n

∂G

∂Z∗

)
dS∗. (3.34)
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Although (3.26) gives the solution to our electrohydrodynamic problem at leading
order, it is incomplete as it still involves two unknown functions of X, P (0)(X)
and Φ(0)(X). To determine these we must examine the solvability conditions of the
higher-order equations in the asymptotic development. This is considered next.

3.3. Solvability conditions

To obtain the solvability condition for Φ(0) we must consider the order ε2 term in the
asymptotic expansion for (3.9) and (3.13):

Φ
(2)
Y Y + Φ

(2)
ZZ = −Φ(0)

XX(X), (3.35)[
mΦ

(2)
Y + nΦ

(2)
Z + `Φ

(0)
X (X)

]
∂D(X)

= 0. (3.36)

Clearly, the right-hand side of (3.35) and the boundary value of the normal derivative
mΦ

(2)
Y + nΦ

(2)
Z cannot be arbitrarily specified, since, Φ(2) must obey the condition∫

D(X)

(Φ(2)
Y Y + Φ

(2)
ZZ ) dY dZ =

∮
∂D(X)

(mΦ(2)
Y + nΦ

(2)
Z ) ds, (3.37)

obtained by applying the divergence theorem to the vector Φ(2)
Y ĵ+Φ(2)

Z k̂ in the domain
D(X). Using (3.35) and (3.36) in (3.37) we obtain a solvability condition for Φ(2),

Φ
(0)
XX(X)

∫
D(X)

dY dZ = Φ
(0)
X (X)

∮
∂D(X)

` ds, (3.38)

which determines Φ(0). The integral on the left-hand side is the dimensionless area of
the cross-section of the channel at axial location X;

A(X) =

∫
D(X)

dY dZ, (3.39)

the integral on the right-hand side also has a simple geometrical meaning. From
figure 1, the change in cross-sectional area between the axial locations X and X+ dX
is equal to the projection on the (Y ,Z)-plane of the section of the channel wall that
lies between these cross-sections. Thus,

−dA =

∮
∂D(X)

n̂ · î (dX) ds = (dX)

∮
∂D(X)

` ds, (3.40)

or

−dA
dX

=

∮
∂D(X)

` ds. (3.41)

Using (3.39) and (3.41) in (3.38) we obtain

Φ
(0)
XX(X)A+ Φ

(0)
X (X)AX = 0, (3.42)

or
d

dX

(
AΦ(0)

X

)
= 0, (3.43)

or

−Φ(0)
X (X)A(X) =F, (3.44)

where F is a constant. Equation (3.44) which determines Φ(0) corresponds physically
to ‘Gauss’s law’ of electrostatics, namely, the net electric flux through the boundaries
of a charge-free domain must be zero. Equation (3.44) may be integrated to determine
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Φ0 in terms of two arbirary constants which may be determined, for example, if the
electric potentials at the inlet and outlet sections are specified.

To determine the unknown pressure distribution P (0)(X), we consider equation (3.18)

V
(0)
Y +W

(0)
Z = −U(0)

X , (3.45)

and the order ε2 terms in the boundary conditions (3.11) and (3.12),[
V (0) +ZΦ(2)

Y

]
∂Ω

= 0, (3.46)[
W (0) +ZΦ(2)

Z

]
∂Ω

= 0, (3.47)

Equations (3.46), (3.47) and (3.36) imply

[mV (0) + nW (0) +Z(mΦ(2)
Y + nΦ

(2)
Z )]∂D(X) = [mV (0) + nW (0) −Z`Φ(0)

X ]∂D(X) = 0.

(3.48)

Equation (3.45) and the boundary condition (3.48) are compatible only if the diver-
gence theorem in the two-dimensional domain D(X):∫

D(X)

(V (0)
Y +W

(0)
Z ) dY dZ =

∮
∂D(X)

(mV (0) + nW (0)) ds, (3.49)

is satisfied. On using (3.45) and (3.48) in (3.49) we obtain∫
D(X)

U
(0)
X dY dZ = −Φ(0)

X

∮
∂D(X)

`Z ds. (3.50)

This relation may be rewritten in a form that would make its physical content more
intuitive. Since the domain D(X) varies in the X-direction we have

d

dX

∫
D(X)

U(0) dY dZ =

∫
D(X)

∂U(0)

∂X
dY dZ −

∮
∂D(X)

`U(0) ds, (3.51)

−` dX ds being the differential area element that makes up the annular region between
D(X) and D(X + dX). Now using the boundary condition (3.20), (3.50) may be
rewritten as ∫

D(X)

U
(0)
X dY dZ −

∮
∂D(X)

`U(0) ds = 0, (3.52)

so that, on using (3.51) for differentiating under the integral sign, we have

d

dX

∫
D(X)

U(0) dY dZ = 0. (3.53)

If we substitute the expression (3.26) for U(0) in the above equation and use (3.44),
we obtain

d

dX

[
−P (0)

X (X)

∫
D(X)

P dY dZ +
F
A(X)

∫
D(X)

E dY dZ

]
= 0, (3.54)

so that,

−P (0)
X (X)

∫
D(X)

P dY dZ +
F
A(X)

∫
D(X)

E dY dZ = Q, (3.55)

where Q is a constant. Equation (3.55) or its equivalent (3.53) is simply the statement
of conservation of volume flux and Q represents the lowest-order approximation to
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the dimensionless volume flux. Equation (3.55) determines the pressure distribution
given the inlet pressure and the volume flux. Alternatively, given both the inlet and
outlet pressures, this equation determines the volume flux of fluid through the channel.

3.4. Summary of solution

The solution in the lubrication limit obtained above is summarized below and ex-
pressed in physical units for convenience in applications. Since the cross-channel
velocity components are of order ε compared to the axial component, we have,

u ∼ îu(x, y, z) + O(ε). On expressing (3.26), (3.44) and (3.55) in physical units, we
have the following solution for the velocity, u, pressure, p, and the electric field,

E ∼ îE(x) + O(ε),

u = −up
µ

dp

dx
+
κF

4πµ

ψ

A(x)
, (3.56)

Q = − ūp
µ
A(x)

dp

dx
+
κFψ̄

4πµ
, (3.57)

E(x) = F/A(x). (3.58)

Here, F is a constant representing the electric flux through any cross-section, A(x) is
the cross-sectional area and the overbar indicates the average over the cross-section,
f̄ = A−1

∫
f dy dz. The constant Q represents the volume flux of fluid through any

cross-section, the dielectric constant and the dynamic viscosity are, respectively, κ and
µ. The functions up and ψ are defined by the scaled versions of (3.27), (3.28), (3.29)
and (3.30):

∂up

∂y2
+
∂up

∂z2
= −1, (3.59)

up|∂D(x) = 0, (3.60)

and

∂ψ

∂y2
+
∂ψ

∂z2
= 0, (3.61)

ψ|∂D(x) = −ζ. (3.62)

Both of these functions up and ψ may be evaluated by quadrature from a knowledge
of the Green function, G, of the Laplace operator with zero boundary condition
corresponding to the domain D(x);

up =
1

4π

∫
D(x)

G(x; y, z, y∗, z∗) dy∗ dz∗, (3.63)

ψ =
1

4π

∮
∂D(x)

ζ(x, y∗, z∗)
(
m
∂G

∂y∗
+ n

∂G

∂z∗

)
ds∗. (3.64)

The physical content of the solution (3.56)–(3.58) is clear. If the properties of
the channel vary slowly in the axial direction, then, according to (3.56), the flow
velocity, to a first approximation, is purely axial, and it may be expressed as a
linear superposition of a purely pressure-driven flow and a purely electro-osmotic
flow. Further, in calculating the local electro-osmotic flow component we must use
an effective ζ-potential ψ which is a certain weighted average, (3.64), of the actual
ζ-potential around the contour of the cross-section. The pressure-driven component
and the electro-osmotic component are proportional to the local pressure gradient and
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the local electric field strength, respectively. The local pressure gradient is calculated
by using the condition (3.57) for volume conservation of fluid, and the local electric
field is calculated by using the condition (3.58) for electric flux conservation. The
solution is completely specified by two independent physical constants, the volume
flux of fluid, Q, and, the flux of electric field, F . These constants may be expressed, if
desired, in terms of the total pressure drop and the total voltage drop, respectively,
between the inlet and outlet sections.

4. Applications
In this section, some applications of the lubrication solution presented above in

general as well as special geometries are indicated.
Let us suppose, that the inlet and exit pressures, pa and pb, are given, together with

the inlet and outlet voltages, Va and Vb. If we integrate (3.58) along the channel, we
obtain

Va − Vb =

∫ xb

xa

E(x) dx = FL〈A−1〉, (4.1)

where x = xa and x = xb correspond to the inlet and outlet sections and L = xb − xa
is the channel length. We have used the notation 〈 〉 to indicate average in the axial
direction, 〈· · ·〉 = L−1

∫ xb
xa

(· · ·) dx. If we solve (3.57) for dp/dx and integrate along the
channel, we obtain

pa − pb = −
∫ xb

xa

dp

dx
dx = µQL〈ū−1

p A
−1〉 − κFL

4π
〈A−1ū−1

p ψ̄〉. (4.2)

If we use (4.1) in (4.2) to eliminate F and rewrite the resulting equation with Q on
the left-hand side, we obtain an expression for the volume flow rate in the channel in
terms of the applied pressure and voltage difference:

Q =
pa − pb
µL

1

〈ū−1
p A

−1〉 +
κ

4πµ

〈ū−1
p A

−1ψ̄〉
〈A−1〉〈ū−1

p A
−1〉

Va − Vb
L

. (4.3)

If we introduce the notation

a∗ =

[
8

π〈ū−1
p A

−1〉
]1/4

, (4.4)

ζ∗ = − 1√
8π

〈ψ̄ū−1
p A

−1〉
〈A−1〉〈ū−1

p A
−1〉1/2 , (4.5)

then, (4.3) may be written as

Q =
pa − pb

8µL
πa4
∗ − κζ∗

4πµ
πa2
∗
Va − Vb
L

. (4.6)

The last equation shows that, within the limits of validity of the lubrication approxi-
mation, the volume flux through any straight microfluidic channel is equal to that of
the flux through a cylindrical capillary of uniform radius a∗ and uniform ζ-potential
ζ∗ which is subject to an identical pressure and voltage drop. The ‘effective’ values of
the radius, a∗, and, ζ-potential, ζ∗, are given by (4.4) and (4.5), and are seen to depend
purely on the geometry of the channel and the charge distribution on its walls. The
concept of the effective radius and effective ζ-potential could be useful in the analysis
of microfluidic circuit components, and could be considered analogous to the concept
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of ‘impedance’ in electric circuit theory. Specific examples of computation of a∗ and
ζ∗ are provided later.

Numerical solution of the electrohydrodynamical equations is often necessary in
order to optimize the design of microfluidic devices (Patankar & Hu 1998). For flow
in straight channels where the lubrication approximation is justified, (3.56)–(3.58)
provide a greatly simplified approach to computing the flow than solving the full three-
dimensional partial differential equations describing the problem. In the lubrication
formalism, we need only solve the sequence of two-dimensional problems defined
by (3.59)–(3.62). Further, if the cross-sectional shapes and boundary distribution of
ζ-potential at different axial locations can be made congruent through a similarity
transformation, the two-dimensional boundary-value problems (3.59)–(3.62) need only
be solved once rather than for each x location. Furthermore, for certain cross-sectional
shapes the Green function G or equivalently the solutions ψ and up may be available
in analytical form. In such cases, the flow field may be obtained simply through
algebraic evaluations without numerically integrating partial differential equations.
Some analytically solvable examples will be considered below.

4.1. Circular capillaries

Let us consider a channel with circular cross-section, the radius being a(x). The length
scale, ∆x over which a(x) varies significantly is assumed to be very much larger than
the largest value of a(x). The boundary-value problems for up for all cross-sections
may be made congruent through the similarity transformation

up = a2(x)Up(ρ), (4.7)

ρ = r/a(x), (4.8)

and the resulting equation for Up(ρ) may be integrated to give

Up(ρ) = 1
4

(
1− ρ2

)
. (4.9)

The equation for ψ may be solved in cylindrical coordinates (r, θ, x) as

ψ = −ζ̄ −
∞∑
m=1

[ζ̃m exp(imθ) + ζ̃∗m exp(−imθ)]ρm, (4.10)

where ζ̃m is the complex Fourier transform:

ζ̃m =
1

2π

∫ 2π

0

ζ(x, θ) exp(−imθ) dθ, (4.11)

and ζ̄ = ζ̃0 is the ζ-potential averaged over the perimeter. (An overbar will indicate
cross-sectional average except where the variable is defined only on the boundary
of the cross-section in which case it would indicate the average over the perimeter.)
From (4.10) we have

ψ̄ = −ζ̄(x), (4.12)

so that (4.4) and (4.5) may be evaluated to give the following expressions for the
effective radius and ζ-potential

a∗ =
1

〈a−4〉1/4 , (4.13)

ζ∗ =
〈ζ̄a−4〉

〈a−2〉 〈a−4〉1/2 . (4.14)
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Note that equation (4.14) implies that, in the lubrication limit, the volume flux through
the channel is independent of the azimuthal distribution of the ζ-potential.

In the absence of an applied voltage, (4.6) and (4.13) give the well-known (Batchelor
1967) result for pressure-driven flows in slowly varying channels

pa − pb =
8µQ

π

∫ xb

xa

dx

a4(x)
. (4.15)

When there is no external pressure difference, pa = pb, (4.6), (4.13) and (4.14) imply

Q = − κ

4µ

〈ζ̄a−4〉
〈a−4〉〈a−2〉

Va − Vb
L

. (4.16)

The problem of electro-osmotic flow through a uniform (a(x) = a0) capillary, with no
externally imposed pressure gradient, and a ζ-potential depending only on the axial
direction, ζ = ζ(x), admits an exact solution (Anderson & Idol 1985) in the Stokes
flow limit (Re = u0a0ρ0/µ→ 0). This solution, which is discussed further later in this
section, gives the following result for the volume flux

Q = −κ〈ζ〉
4πµ

Va − Vb
L

πa2
0, (4.17)

which is seen to be identical to (4.16) when ζ is independent of θ and a(x) is indepen-
dent of x. Note, however, (4.17) follows from an exact solution to the Stokes equation
and is valid even when ζ(x) varies rapidly so that the lubrication approximation is
not applicable.

A few special cases of channels with circular cross-section are now considered in
order to demonstrate the usefulness of these results. In all of the special cases that
follow, the ζ-potential is assumed to vary only in the axial direction.

4.1.1. Capillaries of uniform radius

When a(x) = a0 and ζ = ζ(x), (4.10) reduces to ψ = −ζ(x), and, on using (4.8), the
lubrication equations presented in § 3.4 reduce to

u = −a
2
0 − r2

4µ

dp

dx
− κζ(x)E

4πµ
, (4.18)

Q = − a
2
0

8µ
πa2

0

dp

dx
− κζ(x)E

4πµ
πa2

0, (4.19)

where E = (Va − Vb)/L is the uniform electric field in the capillary. Equation (4.19)
may be solved for dp/dx,

dp

dx
= −8µQ

πa4
0

− 2κζ(x)E

πa2
0

. (4.20)

If no external pressure head is imposed, this equation may be integrated with boundary
condition pa = pb, which gives (4.17) for the volume flux. Therefore, the pressure
gradient and axial velocity may be written as

dp

dx
=

8µu0

a2
0

(
ζ

〈ζ〉 − 1

)
, (4.21)

u

u0

=
ζ(x)

〈ζ〉 + 2

(
1− ζ(x)

〈ζ〉
)(

1− r2

a2
0

)
. (4.22)
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Figure 2. Comparison of the asymptotic solution in the lubrication limit (symbols) with the exact
solution (dashed lines) due to Anderson & Idol. The ratio of channel radius to wavelength, a0/λ, is
indicated near the respective curves, the asymptotic solution corresponds to a0/λ→ 0.

As a special case of an axially varying ζ-potential, let us consider

ζ(x) = ζ0 + ∆ζ sin
(

2π
x

λ

)
, (4.23)

where λ and ∆ζ are the wavelength and amplitude of the fluctuations. We then obtain
from the lubrication solution (4.22)

u

u0

= 1 +
∆ζ

ζ0

F0(ρ) sin(αX), (4.24)

where

F0(ρ) = 2ρ2 − 1. (4.25)

Here, ρ = r/a0 and X = x/a0 are dimensionless radial and axial coordinates and
α = 2π(a0/λ) is the appropriate parameter characterizing the lubrication limit (α� 1).
The exact solution corresponding to the distribution (4.23) in the Stokes flow limit
may be written down as a special case of the series solution presented by Anderson
& Idol:

u

u0

= 1 +
∆ζ

ζ0

F(ρ) sin(αX), (4.26)

where

F(ρ) =
α−1I0(αρ)[1− αI0(α)/2I1(α)] + (ρ/2)I1(αρ)

α−1I0(α) + 1
2
I1(α)− I2

0 (α)/2I1(α)
. (4.27)

Here, I0 and I1 are the modified Bessel functions of order zero and one, respectively.
In the limit of small α, we may replace I0 and I1 by their asymptotic forms for small
argument (Abramowitz & Stegun 1970), so that we may readily verify

lim
α→0

F(ρ) = 2ρ2 − 1 = F0(ρ), (4.28)

which is consistent with (4.25) derived using lubrication theory.
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Figure 2 compares F(ρ) and F0(ρ) for several values of the ratio a0/λ. It is seen,
that, for a0/λ = 0.1 or less, the prediction of the lubrication analysis is in excellent
accord with the exact solution. For a0/λ ∼ 1, the exact solution deviates significantly
from the lubrication solution. In the opposite limit of a0/λ � 1, the exact solution
is seen to be of the nature of a boundary layer, where the bulk flow in the tube is
almost identical to a plug flow with uniform ζ-potential ζ = ζ0, and the effect of the
fluctuations in the ζ-potential is felt only in a thin shear layer very close to the wall.

4.1.2. Capillaries with corrugated walls

Equations (4.13) and (4.14) for the effective radius and cross-section can be used
to illustrate an effect that appears to have been first noted by Ajdari (1995, 1996).
Since (4.14) involves an axial average of ζ̄ weighted by certain powers of a(x), it is
quite possible to have a net flow (ζ∗ 6= 0), even though 〈ζ̄〉 = 0. The result is generally
true, even for capillaries of non-circular cross-section, since, on replacing ψ̄ in (4.5)
by (3.64), it is seen that 〈ζ̄〉 = 0 in general does not guarantee ζ∗ = 0. Physically, the
effect comes about as a consequence of the conservation of electric flux. The electric
field is amplified in narrow sections of the tube inversely as the area, so that more
momentum is transferred to the free charges in the Debye layer in narrow sections
of the tube than in the wider sections even though the charge per unit length in the
wide and narrow sections may be the same. The effect is of relevance to some models
of the propulsion mechanism in certain cells (Lammert, Prost & Bruinsma 1996) and
in the bacterial flagellar motor (Berry 1993).

As a specific example, let us consider a corrugated channel

a(x) = a0 + ∆a sin

(
2π

λ
x

)
, (4.29)

and a distribution of ζ-potential such that

ζ̄ = ζ0 sin

(
2π

λ
x+ φ

)
, (4.30)

(of course, if the charge distribution is axially symmetric, ζ̄ = ζ). The effective ζ-
potential, ζ∗, may be obtained by substitution of these relations in (4.14), the integrals
involved in the averaging operator is best evaluated numerically. If ∆a � a0, (4.14)
may be evaluated by linearizing in ∆a/a0:

ζ∗ ≈ −2ζ0

∆a

a0

cosφ, (4.31)

which is a good approximation when ∆a � a0. Therefore, in the absence of an
imposed pressure head (pa = pb), the dimensionless fluid flux is

Q

u0πa
2
0

= −2
∆a

a0

cosφ, (4.32)

where u0 = −(κζ0E)/(4πµ), E = (Va − Vb)/L. Figure 3 shows Q/(u0πa
2
0) divided by

∆a/a0 as a function of the phase difference φ between the waves of wall deformation
and electric charge, evaluated using the expression (4.14) as well as the approximate
form (4.32) valid for small deformation. It is seen that the volume flux has the largest
positive value when the two waves are exactly out of phase (φ = π) and the smallest
negative value when they are in phase (φ = 0, 2π). The linearized theory, (4.32), is a
good approximation for ∆a/a0 ∼ 0.1; however, for ∆a/a0 ∼ 1, it overpredicts the flow
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Figure 3. The normalized volume flux per unit amplitude as a function of the phase difference φ
between the wall deformation and the ζ-potential for various values of the amplitude ∆a/a0 in the
case of a cylindrical capillary with wavy walls. Symbols indicate the result of using equation (4.14)
and the solid line corresponds to the small-amplitude approximation to it, equation (4.32).

rate. The result of using (4.14), denoted by the symbols, should be accurate for large
or small values of ∆a/a0 since its accuracy is only determined by the validity of the
lubrication approximation, λ� a0.

Ajdari (1995, 1996) demonstrated this effect by considering the problem of electro-
osmotic flow between a plane and a slightly wavy wall with a sinusoidal distribution
of wall ζ-potential along one of the walls. An explanation of the effect is presented
here within the framework of lubrication theory for channels of arbitrary cross-
sectional shapes and wall charge distributions. An explicit calculation illustrating this
was shown for capillaries of circular cross-section, and, later, for flow between parallel
walls.

4.2. Channels of rectangular cross-section

Cylindrical capillaries are commonly used for capillary electrophoresis. However,
microfluidic circuits are usually produced by etching on a substrate, so that the
channel cross-sections are generally trapezoidal or rectangular in shape. We therefore
consider a channel of rectagular cross-section, the length of the edges being 2b and
2c. In general, b and c could vary in x, and, further, the orientation of the rectangle
could change with x. It is only required that the length scale for any such variation
be much larger than the maximum value of c or b. The distribution of ζ-potential
can be completely arbitrary, except that, if it varies in the x-direction, such variation
must be ‘slow’ in the above sense.

In the lubrication approximation, the problem reduces to determining the functions
up and ψ at every axial location x. Without loss of generality, we may choose the y-
and z-axes along the edges of the rectangle, so that b > y > −b and c > z > −c
define the channel cross-section. Fortunately, the functions up and ψ can be determined
analytically for arbitrary ζ-potential distributions along the edges of the rectangle.

Equations (3.59) and (3.60) admit an analytical solution (Whitham 1963) for
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rectangular cross-section

up(y, z) = 1
2
b2− 1

2
y2−2b2

(
2

π

)3 ∞∑
n=0

(−1)n

(2n+ 1)3

cosh[(2n+ 1)(πz/2b)]

cosh[(2n+ 1)(πc/2b)]
cos[(2n+1)(πy/2b)].

(4.33)
The solution can be integrated over the cross-section to find the flux,

4bc ūp = 4
3
cb3 − 8b4

(
2

π

)3 ∞∑
n=0

1

(2n+ 1)5
tanh

[
(2n+ 1)

πc

2b

]
. (4.34)

In the special cases b ≈ c and b� c, we have the useful asymptotic forms

4bcūp ∼
{

0.5623 b4 if c ≈ b
cb3
(

4
3
− 0.840b/c

)
if c� b.

(4.35)

Incidentally, the asymptotic form for c � b given above, is accurate to within 10%
as long as b < 0.7c (Anderson et al. 2001).

The problem for ψ involves solving the harmonic equation in a rectangular domain
with Dirichlet boundary condition ψ = −ζ where

ζ ∼


ζ−h (y) if z = −c,
ζ+
h (y) if z = +c,
ζ−v (z) if y = −b,
ζ+
v (z) if y = +b,

(4.36)

where ζ−h , ζ+
h , ζ−v and ζ+

v are arbitrary functions of y or z. They could also depend on
x, though the x-dependence is not shown explicitly for brevity. Owing to the linearity
of the Dirichlet problem, the solution may be written as

ψ = ψ−h + ψ+
h + ψ−v + ψ+

v , (4.37)

where ψ−h is the solution of the Dirichlet problem with ζ = ζ−h on the z = −c
boundary and ζ = 0 on the remaining three sides, and ψ+

h , ψ−v and ψ+
v are defined by

analogy, and correspond to the sides z = +c, y = −b and y = +b, respectively. The
solution to any one of the four problems can be obtained readily using the method
of separation of variables, and the remaining solutions may be written down from
symmetry. Thus,

ψ−h (y, z) =

∞∑
n=1

ζ̃−h (n)
sinh

[nπ
2b

(z − c)
]

sinh
(nπc
b

) sin
[nπ

2b
(y + b)

]
, (4.38)

ψ+
h (y, z) = −

∞∑
n=1

ζ̃+
h (n)

sinh
[nπ

2b
(z + c)

]
sinh

(nπc
b

) sin
[nπ

2b
(y + b)

]
, (4.39)

ψ−v (y, z) =

∞∑
n=1

ζ̃−v (n)
sinh

[nπ
2c

(y − b)
]

sinh

(
nπb

c

) sin
[nπ

2c
(z + c)

]
, (4.40)

ψ+
v (y, z) = −

∞∑
n=1

ζ̃+
v (n)

sinh
[nπ

2c
(y + b)

]
sinh

(
nπb

c

) sin
[nπ

2c
(z + c)

]
, (4.41)
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where

ζ̃−v (n) =
1

c

∫ +c

−c
ζ−v (z) sin

[nπ
2c

(z + c)
]

dz, (4.42)

ζ̃+
v (n) =

1

c

∫ +c

−c
ζ+
v (z) sin

[nπ
2c

(z + c)
]

dz, (4.43)

ζ̃−h (n) =
1

b

∫ +b

−b
ζ−h (y) sin

[nπ
2b

(y + b)
]

dy, (4.44)

ζ̃+
h (n) =

1

b

∫ +b

−b
ζ+
h (y) sin

[nπ
2b

(y + b)
]

dy, (4.45)

are Fourier transforms of the ζ-potentials, which could, in general, depend on x,
though such dependence must be ‘slow’ in the sense of the lubrication approximation.
In order to determine the effective ζ-potential, ζ∗, we need ψ̄. This may be readily
obtained from the above solution for ψ. The calculation may be shortened if we note,
that, for separable functions ψ =

∑
A(y)B(z), ψ̄ =

∑
A(y)B(z). We then obtain after

some algebra,

ψ̄ = − 2

π2

∞∑
n=0

[Fn(h){ζ̃+
h (2n+ 1) + ζ̃−h (2n+ 1)}+Fn(h

−1){ζ̃+
v (2n+ 1) + ζ̃−v (2n+ 1)}],

(4.46)

where h = c/b, the aspect ratio, and F is a function defined as follows:

Fn(x) =
1

x

tanh[(2n+ 1)(π/2)x]

(2n+ 1)2
. (4.47)

The effective ζ-potential, ζ∗, may be evaluated by substituting (4.46), (4.34) and
A = 4bc into (4.5) and evaluating the 〈 〉 which, in the general case, is best done
numerically. In the case of a square cross-section, h = 1, it is of interest to note that
ψ̄ involves only the mean of the Fourier transforms of ζ for each wall. A few special
cases of problems with rectangular cross-section are discussed below.

4.2.1. Flow between parallel plates

The limit c/b = h � 1 corresponds to the special case of flow between parallel
plates located at y = ±b(x). Equation (4.33) then reduces to

up = 1
2
(b2 − y2), (4.48)

the well-known parabolic profile, so that, ūp = 1
3
b2. Further, on replacing the sinh

terms in (4.40) and (4.41) by the linear approximation sinhx ≈ x since the argument
of the sinh terms are small, and on noting that the resulting summation over n reduces
simply to the Fourier expansion of the ζ-potential, we obtain

ψ = ψ+
v + ψ−v = − 1

2
[ζ+
v (x, z) + ζ−v (x, z)]− y

2b
[ζ+
v (x, z)− ζ−v (x, z)], (4.49)

where we have displayed the x-dependence of the ζ-potentials explicitly. The mean
over the cross-section, ψ̄, may be evaluated from (4.46), but it is easier to simply
average (4.49),

ψ̄ = −ζ̄(x), (4.50)
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where

ζ̄(x) = lim
c→∞

1

2c

∫ +c

−c
1
2

[
ζ+
v (x, z) + ζ−v (x, z)

]
dz, (4.51)

is the average value of the ζ-potential over the boundary of the cross-section. The
effective radius, a∗, and ζ-potential, ζ∗, is evaluated easily on substitution of these
expressions for ūp and ψ̄ in (4.4) and (4.5):

a∗ = (2c)1/4

[
16

3π〈1/b3〉
]1/4

, (4.52)

ζ∗ = (2c)1/2

√
3

4π

〈ζ̄/b3〉
〈1/b〉〈1/b3〉1/2 , (4.53)

so that (4.6) gives the following expression for the volume flux per unit spanwise
length

Q

2c
=

2

3

1

〈1/b3〉
pa − pb
µL

− κ

4πµ

2〈ζ̄/b3〉
〈1/b〉〈1/b3〉

Va − Vb
L

. (4.54)

In the case where the distance between parallel plates, 2b, is constant, the above
expression for the volume flux reduces to

Q =
2b3

3µ

pa − pb
L

− κ〈ζ̄〉
4πµ

Va − Vb
L

(2b). (4.55)

That is, for parallel uniformly spaced walls, the volume flux may be calculated
simply by replacing the variable ζ-potential by its value averaged over the channel
boundaries. This result is exactly analogous to the case of flow through a capillary
of uniform radius considered in § 4.1.1 in the lubrication limit, and independently
proved earlier by Anderson & Idol for Stokes flow in uniform radius capillaries with
ζ-potential varying only in the axial direction.

The phenomenon of electro-osmotic pumping in the absence of a net charge
discussed in § 4.1.2 can also be demonstrated using (4.53). Consider a wavy wall

b(x) = b0 + ∆b sin

(
2π

λ
x

)
, (4.56)

together with a sinusoidally varying cross-sectional mean for the ζ-potential

ζ̄ = ζ0 sin

(
2π

λ
x+ φ

)
. (4.57)

The right-hand side of equation (4.54) can easily be evaluated numerically or analyti-
cally. In particular, if there is no external pressure head (pa = pb), and, if ∆b� b0,

q

2b0u0

= −3

2

∆b

b0

cosφ, (4.58)

where q = Q/(2c) is the volume flux per unit span and u0 = −(κζ0E)/(4πµ) with
E = (Va − Vb)/L is a characteristic electro-osmotic velocity. Figure 4 shows the
dimensionless flow rate q/(2b0u0), divided by the amplitude, ∆b/b0, as a function
of the phase φ, for several values of (∆b/b0). The symbols indicate the result of
direct numerical evaluation from equation (4.54) with pa = pb, and the single line is
the result of using (4.58) valid for ∆b/b0 � 1. Once again, we observe that a mean
flow is possible in the absense of a net charge (〈ζ̄〉 = 0), as noted by Ajdari. The
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Figure 4. The normalized volume flux per unit amplitude as a function of the phase difference φ
between the wall deformation and ζ-potential for various values of the amplitude, ∆b/b0, for flow
between parallel plates with wavy walls. Symbols indicate the result of using equation (4.54) and
the solid line correspond to the small-amplitude approximation to it, equation (4.58).

0.5

0.3

0.2

0 0.2

(Q
/u

0p
a 02

) o
r (

q/
2b

0u
0
)

0.4

0.1

0.4 0.6 0.8 1.0

(Da/a0) or (Db/b0)
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—–, flow between parallel plates, and – – –, through a circular capillary, if the ζ-potential and the
wall deformations are exactly out of phase (φ = π).

net flow can be in either direction, depending on the phase φ. Further, for large
deformations of the wall, the flow is no longer linear with respect to the amplitude
of deformation, but the magnitude of the flux is smaller than that predicted by the
linearized version of (4.54). For a fixed phase (φ = π), the flux depends in a nonlinear
way on the amplitude ∆b/b0, as shown in Figure 5. The solid line in figure 5 shows
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(q/2b0u0) as a function of ∆b/b0 in the case of parallel walls, the dashed line shows
the corresponding quantity Q/u0πa

2
0 as a function of ∆a/a0 in the case of a circular

capillary. It can be seen that there exists an optimum deformation for which the flow
rate is a maximum.

4.2.2. Uniformly charged walls

Microfluidic channels are sometimes made by etching channels on a silicon substrate
and then bonding the substrate with a glass plate. In such a situation, the channel
is bounded by three silcon surfaces, and one glass surface which has a different
ζ-potential. It is therefore of interest to consider the special case when ζ−h , ζ+

h , ζ−v and
ζ+
v are constants, but may not all be equal. In this case, the Fourier transforms of ζ

are given by

ζ̃+
h (n) =


4ζ+

h

nπ
if n is odd,

0 otherwise,

(4.59)

and similarly, for the other three faces. If these expressions are used in (4.46), the
result can be written as

ψ̄ = −ζ
+
v + ζ−v

2
+ (ζ+

v + ζ−v − ζ+
h − ζ−h )

8

π3

∞∑
n=0

Fn(h)

(2n+ 1)
, (4.60)

where we have used the identity (Gradshteyn & Ryzhik 2000)

∞∑
n=0

1

(2k + 1)3
[Fn(x) +Fn(x

−1)] =
π3

16
, (4.61)

to eliminate the terms involving Fn. Equation (4.60) shows that the effective ζ-
potential is determined by the sum and difference of the average ζ-potential between
pairs of opposing walls.

In particular, if all the walls have the same ζ-potential, ζ+
h = ζ−h = ζ+

v = ζ−v = ζ0,
then ψ̄ = −ζ0, a result that is fully expected, since, in this case, ψ = −ζ0 is the
exact solution to the boundary-value problem defining ψ. If three walls have identical
ζ-potential, for example ζ+

h = ζ−h = ζ−v = ζ0 and ζ+
v = ζ1, then we obtain from (4.60)

ψ̄ = −ζ0 − (ζ1 − ζ0)
16

π3

∞∑
n=0

Fn(h)

2n+ 1
. (4.62)

These formulae could be useful in practical applications as they can be used to
facilitate the evaluation of (4.4) and (4.5) which enable calculation of the volume flux
for arbitrary pressure and potential differences through (4.6).

4.3. Other cross-sectional shapes

We have seen that, in the lubrication approximation, the electrohydrodynamic problem
of flow through a microchannel reduces to the solution of the pair of boundary-
value problems (3.59)–(3.60) and (3.61)–(3.62) defined on a plane, or, equivalently,
to the determination of the Green function G for the cross-sectional shape. We
have examined two cases, namely microchannels with circular and rectangular cross-
sectional shapes, where both these boundary-value problems admit analytical solutions
for arbitrary distributions of the ζ-potential. Fortunately, analytical solutions are also
obtainable for a variety of other cross-sectional shapes.
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Determining ψ involves solving the Laplace equation with Dirichlet boundary
conditions, a well-studied problem in mathematical physics, with known solutions
for a variety of cross-sectional shapes. The problem (3.59)–(3.60) clearly represents
the flow in an infinite cylinder with cross-sectional shape given by the local cross-
sectional shape of the microchannel at the location x under a unit pressure gradient.
Equations (3.59)–(3.60) also describes the shape of a soap film stretched across a hole,
D(x), with an overpressure on one side, a fact exploited by Taylor (1937) to fashion an
ingeneous ‘analogue computer’ for solving (3.59)–(3.60). Finally, the boundary-value
problem for up is related in a simple way (Love 1944) to the torsion produced in
an infinite cylinder whose cross-section corresponds to D(x), when a small twist is
applied to it. Analytical solutions for the following domain geometries are known
(Love 1944 ch. 14) and could be useful in the context of electro-osmotic flows:

(i) elliptical region,
(ii) sector of a circle,
(iii) curvilinear rectangle bounded by two concentric circular arcs and two radii,
(iv) annular region between two concentric or non-concentric circles,
(v) annular region between two concentric ellipses.

Note, that a trapezoidal domain could be considered to be a special case of (iii), if
the radii of the concentric circles become infinitely large, but their difference, and
the arc subtended by the radii, remain finite. Trapezoidal shapes are of particular
interest, since microfluidic channels made by chemical etching on substrates usually
have a trapezoidal cross-section.

5. Conclusion
The problem of electro-osmotic flow in a straight microfluidic channel was consid-

ered in situations where the wall ζ-potential and cross-sectional shape could vary in
the axial direction. Such non-uniformities in the ζ-potential could arise by accident or
by design. The pressures and voltages at the inlet and outlet sections of the channel
are considered known. The problem was formulated in the limit where the Debye
layer thickness at the wall is negligible in comparison to a characteristic channel
width, so that the coupling between the electrostatic and hydrodynamic problems
could be described through the Helmholtz–Smoluchowski slip boundary conditions.

Since microfluidic channels are usually of macroscopic size in the axial direction
though the characteristic width is measured in micrometres, for a wide range of
practical problems it may be a good approximation to consider the characteristic
width to be very much smaller than the characteristic length scale for axial variation
in channel properties (cross-sectional area, shape and wall ζ-potential). In the limit
when the ratio of these two scales is small (the lubrication limit), it was shown that
the electrohydrodynamic problem admits a simple solution, the evaluation of which
requires only a knowledge of the Green function for the Laplace operator with zero
boundary conditions corresponding to each cross-section of the channel. Thus, in
situations where the Green function, or equivalently, the functions up and ψ related
to it, can be determined analytically, the problem of electro-osmotic flow admits an
analytical solution. Even in situations where the Green function cannot be determined
analytically, the numerical problem of determining the flow is reduced to solving a
sequence of two-dimensional linear problems, a much simpler task than integrating
the full three-dimensional Navier–Stokes or Stokes equations.

One of the consequences of the lubrication solution is that the flow rate through any
section of a straight microfluidic channel with variable axial properties is the same as
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that through a uniform cylindrical capillary with a certain ‘equivalent’ radius a∗ and
ζ-potential, ζ∗, that is determined solely by the geometry and wall charge distribution
in the channel. In the special case of a cylindrical capillary, ζ∗ reduces simply to the
axially averaged value of ζ in agreement with an earlier result due to Anderson &
Idol. In electrical circuit analysis, various components in a branch of a circuit may be
lumped into a single complex number (the electrical impedance) for the purpose of
calculation of the currents through various branches of the network. The equivalent
radius and ζ-potential could similarly be used to characterize the resistance to fluid
flow in each branch of a microfluidic circuit on application of any combination of
external pressure head and electrical voltage. Such ‘circuit analysis’ ideas have already
been applied to simple microfluidic junctions (Jacobson, McKnight & Ramsey 1999).

A common difficulty in capillary electrophoresis of proteins is the tendency of the
analyte to stick to the walls of the channel (Towns & Regnier 1991). This, in turn,
affects both the bulk flow and the velocity profile across the channel cross-section
owing to the appearance of an induced pressure gradient that must result in order
to satisfy the requirement of continuity. The lubrication approximation allows us to
calculate this pressure gradient and the associated modification of the velocity field for
any known ζ-potential distribution. However, in the problem of electrophoresis in the
presence of adsorbing walls, this distribution itself evolves in time in a way determined
by the adsorption properties of the wall, diffusive properties of the analyte and the
flow field itself. The full problem of axial dispersion of an analyte in an adsorbing
channel driven by an electro-osmotic flow is difficult and has not been addressed
analytically, though some numerical simulations of the underlying equations have
been reported (Ermakov et al. 1995; Potoček et al. 1995; Schure & Lenhoff 1993;
Zhukov, Ermakov & Righetti 1997). The lubrication analysis presented here, could be
useful as a component of such a theoretical analysis that may be developed. Analytical
solutions have been obtained recently for reduced versions of the full problem in two
special cases. In the first case, travel time for a plug of adsobing analyte across a
fixed length of capillary was calculated by assuming an ad hoc functional form for
the modified ζ-potential behind the plug (Ghosal 2002a). In the second case, Taylor
dispersion of a non-adsorbing analyte in a cylindrical capillary, a section of which
is coated to alter the wall ζ-potential was calculated (Ghosal 2002b). In either case,
good agreement with experiments are obtained. The lubrication theory presented here
could serve as a starting point for a complete analytical theory of Taylor dispersion in
capillaries with adsorbing walls in general geometries. Some progress in this direction
has been made, and will be reported on in a future paper.

Another result that follows readily from our expression for the effective ζ-potential
is that a net fluid flux may develop in a channel in the absence of an external pressure
head, even if the total charge on the walls is zero (that is 〈ζ̄〉 = 0). This is because
ζ∗ involves a weighted average of the local ζ-potential with a weight determined by
quantities related to the channel geometry. Therefore, 〈ζ̄〉 = 0 implies ζ∗ = 0, only
if the geometry of the channel cross-section does not change in the axial direction.
The possibility of a net flow in the absence of a net charge was noted by Ajdari,
who showed it in the special case of flow between two parallel walls, one of which
has small sinusoidal variations in ζ-potential and the other has small sinusoidal
deformations on its surface. The lubrication analysis shows this effect in a more
general context for channels of arbitrary cross-section and wall charge distributions.
In particular, for a cylindrical capillary and flow between parallel plates, the flow rate
is explicitly calculated, and its dependence on the amplitude and relative phase of the
perturbations in channel shape and wall charge is shown.
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The lubrication analysis reduces the problem of electro-osmotic flow to determining
the Green function G for any cross-section, or equivalently, solving two boundary-
value problems for the quantities ψ and up. The function ψ is defined by a two-
dimensional Laplace equation with Dirichlet boundary conditions, and up is defined
by a Poisson’s equation with zero boundary conditions. Explicit analytical solutions
for up and ψ are presented for channels of circular and rectangular cross-sections. In
the special case of a uniform circular cylinder with no imposed pressure head and a
wall ζ-potential that varies sinusoidally in the axial direction, an analytical solution
is obtained and compared with the exact solution to the corresponding Stokes flow
problem. The two solutions are found to be in excellent agreement if the ratio of
channel radius (a0) to wavelength (λ) of the ζ-potential perturbation is less than 0.1.
The asymptotic solution differs significantly from the exact solution in the ‘opposite’
limit a0/λ � 1. For a0/λ > 10, the character of the flow changes qualitatively and
may no longer be described by the lubrication solution. In this regime, the flow in
the bulk of the channel does not ‘see’ the fluctuations in the ζ-potential and develops
a ‘pure’ electro-osmotic flow driven by the mean ζ-potential. The effect of the rapid
fluctuations is felt in a narrow boundary layer where a region of high shear exists.
Finally, it should be noted that neither the lubrication solution nor the exact solution
takes account of inertial effects. In the lubrication limit, the inertial terms are of order
(a0/λ)Re (where Re is a Reynolds number based on channel radius and characteristic
electro-osmotic velocity) and do not appear at leading order even if Re ∼ 1. In the
analytical solution of Anderson & Idol, it is assumed that Re is negligible so that the
solution for the Stokes equation is exact.

The lubrication analysis presented here could provide a starting point for various
other problems in the electro-osmotic flow in channels of general geometry. In
particular, the solution for the axial velocity could be used in the analysis of Taylor
dispersion of scalars in microfluidic channels due to axial variations in wall properties.
This is a problem of great importance in microfluidics since ‘band spreading’ due to
Taylor dispersion limits the resolution of electrophoretic separations.

The author wishes to thank Professors Joseph B. Keller and Howard Stone for
their helpful comments on this work, and anonymous referees for bringing several
relevant references to the author’s attention.
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des Naturalistes de Moscou 2, 327–337.

Schure, M. R. & Lenhoff, A. M. 1993 Consequences of wall adsorption in capillary electrophoresis:
theory and simulation. Anal. Chem. 65, 3024–3037.
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